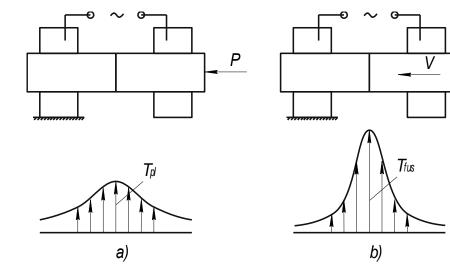
Student	 Group	o
Student		<i></i>

Laboratory work № 1 **«Resistance spot welding»**

Laboratory work № 1 « Ro	esistance spot welding»
Technical data of	the machine MT-1606
Materials to be welded and its thickness: _	
Maximum power of the machine is	_ kW, rated welding current is kA.
The electric circuit of the	he machine MT-1606
PLSU -	
TR;	PSV BI #
PB –;	
rb	380V HV HV
HV –;	FS
	WT 71 72
T_{1},T_{2} ;	.00
EC . W	· ·
FS –; W	1
The pneumatic system of the machine MT-1606	
4	
1;	
2 –;	
3 – ;	
,	
4 –;	Air
5 –;	
	+
U;	
7 –;	
	ı


						,
		ers of welded sp			<u>\alpha</u> 0	<u> </u>
				<u> </u>		<i>a</i>
				4		
						ı
		P	rotocol of th	e sample's testi	ng	
nent	Material			; Sheet th	nickness, S, mm -	+
Experiment		Pressing force P kN	neter, mm -, Power Level	Welding	Distractive	Nature of destruction
1.	aun	force, P, kN	Level	time, t _w , sec	force, F _d , kN	destruction
2.						
3.						
4.						
5.						
			Str	ength diagram		
F _d , kN						
						t _w , sec
Conclus	ions:					

Student			
Student			

Group _____

Laboratory work № 2 «**Resistance butt welding and soldering**»

Upset (butt resistance) welding is used for
The main parameters of the upset welding are
Flash welding is suitable for
The main parameters of the flash welding are

Technical data of the machine MC-301

b) _

1. Nominal power – _____kW;

2. Supply voltage – _____ V.

3. Cross-section welded: steel – _____ mm²; copper alloys – _____ mm².

4. Maximum of squeezing force – ____ kN.

5. Number of power level – _____.

6. Secondary voltage – _____ V.

7. Welding current – _____ kA.

Electric circuit of the machine MC-301

PS1,	PS2 –				_; [
RU -			; TR –		_;		PS1 PS2	RU	~ 380\ ~
AB –	-	;	SB		;		TR P		
LS –		;	1 –		;	1		<i>⊥ AB</i>	1 SB 5
2 – _		;3	3 –		;	111111			
4		;	5 –		_		LS 9	7	
		:6-			; 7		<u>1</u> 3		4
							dunn.		⊥ LB
					_, ,				
				•					
a)		Process of re		razıng		$\sum_{i=1}^{n}$	1 _	= 1	
								T '	
						i	a) b)		c)
c)									
3.5				ol of the sample te					
		, mm ²		Brazier – Flux					
No		·		Upset Welding Distractive				Natu	re of
	process			distance, mm					
1	Welding								
2	Welding								
3	Welding								
4	Soldering								
5	Soldering								
	C 1i								_
	Conclusion	l							
Ratin	ıg			Instructor'	s signa	iture _			

Group
achine submerged welding»
e submerged welding
, which is completely hidden under
is used as bonding agent.
submerged arc welding
[i] Welding
direction
1
00000
6 5 4
$U \mid U_{\infty}$
J_{w}, U_{w} $\frac{2}{3}$
4
J_{sc}
♂
ers of the process are:
;
; 3;
; 5

Main units of the machine ABC

1 –						_;		7			
2 –						_; 8		7		П	
3 –											
									<u>ti_j</u>		
							6	00	-		5
							∇)0 	(f		
							0-	δ -			
							4	U		•	
1. S 3. Г	speed of w	velding – of filler w	Weldingire –	operation m/m	al specific in. mm.	cation of t	wire feed	speed – _			
				7	Гуреs of b	utt joints					
a) _						;	a/	1	Ы	1.	
b) _						;	Ĺ)		3111	
c) _ d) _							<i>E1</i>	Ţ,	<i>d)</i>		
			Tab	le of weld	ding condi	tions and	test resul	ts.		,	
	Material and thickness S, mm	Type of joint	Current I, A	Voltage U, V	Welding speed Vc, m/h	Wire feeding rate V _n , m/h	Flux	Weld hardness HR	Base metal hardness HR	HAZ hardness HR	
	C	onclusion	s:								-
											_
Rat	ing				Iı	nstructor's	s signatur	e			

Student		
Student		

Group _____

Laboratory work No 4 «Manual arc welding with AC transformers»

For manual arc welding open circuit voltage on the safety side shall be maximum V
for alternative current and V for direct current. The slope shall be
Performances of the transformer TD-500
1. Power consumed kW. 2. Supply voltage of power source or
3. Open circuit voltage: at high currents range V; at low currents range V.
4. Rated current A. 5. Range of current regulation A.
Scheme of the welding transformer TD-500
2
3
4
5 –
6
0- <u> </u>
The bobbins of secondary winding are
Electrical circuit of the transformer TD-500
The secondary winding consists of coils and the primary
winding consists of coils, two of which are the
and the others are
·
connection of bobbins gives low
inductive resistance and the range of high currents and the
connection gives high inductive
resistance and the range of low current.
If connection of coils the
additional sections of primary winding are

Protocol of the test of transformer TD-500

			Measurement				
Number	Current on the scale	Open circuit, U, V	Short circuit, I, A	Operatir Current, I, A	voltage, U, V		
1	90			1, 71	, v		
2	150						
3	240						
4	240						
5	300						
6	350						

Graf of the TD-500's external characteristics

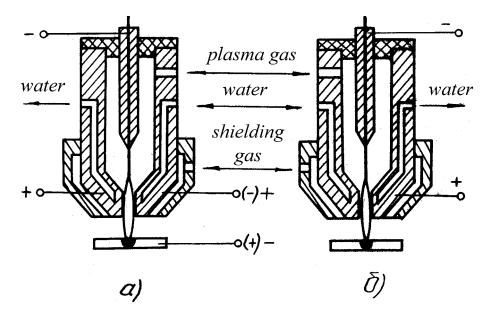
₽.	 		ı		1

onclusions:	 		

Rating _____ Instructor's signature _____

Laboratory work N_2 5 **«Analysis of electric arc characteristics and equipment for TIG welding»**

Argon is an, _	gas; it does not	with metals and
does not	in them;	
There are two types of a	argon arc welding:	
and		
	is usually used as the material	of non-consumable electrode. The
	•	s thermal emission.
		thermal emission.
Onlyou	tput characteristic can guarantee	steady-state arc under TIG welding.
Scheme of TIG	welding:	J = 3 /
1 –	,	TRI 5
2 –		
		Ø.A.N.\\
3	,	
4 –	, + •	
5 –	,	6
		1
6 –		
S	chematic circuit of the IST-125 i	nverter
Z20 V ~ Thyristor rectifier	- Filter - Thyristar	Outlet Bridge
TELITIEI	converter	rectifier bridge
<u>, </u>	—— <u> </u>	
Stabilizer	- Control circuit	
	•	put terminal of thyristor rectifier, is
-	_	ectified by the outlet rectifier to
curren	nt and comes to output terminal o	inverter.


Measured results to plot the output characteristic slope of IST-125

Arc length, L, mm	1	2	3		4	
Arc voltage, U, V						
Current I, A						
Current, I, A	5	10	20	30	40	
Voltage, U, V (L=2mm)						
Voltage, U, V (L=5mm)						
		1			1	
Sum of anode voltage drop	and cathode	voltage dro	op, U _a +U _κ	=		
Voltage drop per arc length						

Rating _____

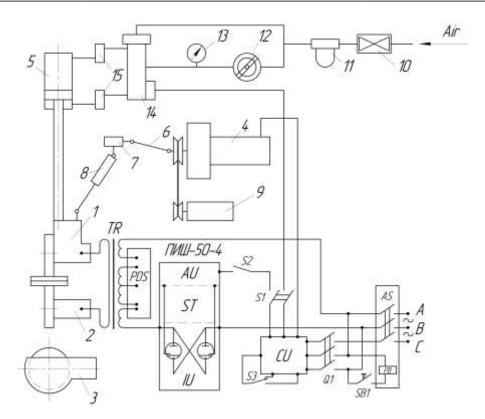
Instructor's signature ______

Laboratory work Nolange 6 «Microplasma arc welding»

The	arc can be used at the plasmatrones,	, when the work metal
is one of the arc electrode, and the	e arc is	used, when this metal
isn't included in the current circuit.		
An pilot arc is struck betw	ween the electrode and the	Into the nozzle
gas is fed. The or	uter layers of the gas flow passing throu	igh the outlet have a
	Those results in plasma concentrat	ing, the temperature
in the		
The important characteristics	of the heat source are H_9 ()
and q_3 ().	

Protocol

Danier of the market Daniel	Number of the experiment						
Parameters of the mode. Results.	1	2	3	4			
Grade of a material							
Sheet thickness, mm							
Type of joint							
Polarity							
Welding current for nontransferred arc, A							
Welding current for transferred arc, A							
Arc voltage ,V							
Open circuit voltage, V							
Impulse duration of arc current, s							
Pause between the welding current impulses, s							
Plasma gas consumption, l/min							
Shielding gas consumption, l/min							
Tungsten electrode diameter, mm							
Heat-flow rate, W/mm ²							


Rating	Instructor's signature

Conclusions

Student	Grou)
		·

Laboratory work № 7 **«Resistance seam welding»**

Resistance seam welding use	as electrodes and
for workpiece heating.	
Main parameters of resistance seam welding are	
Optimal values of the parameters depend on	

1 – 6 –

2 – 7 –

3 – 8 –

4 – 9 –

5 – 10 –

	11 –					CU –			
12 –						AS –			
13 –						AU –			
	14 –					TR –			
	15 -					PoS -			
	13 -								
			Technica	ıl data c	of the M	Ш-160	1 machii	ne	
	– rating	at 20% dut							
	– weldir	ig rate					m	ı/min,	
number of power levels				,					
	– welde	d sheet thic	kness				m	nm,	
	– workiı	ng stroke of	f the upper e	lectrod	e		m	ım,	
	– nomin	al outreach	of electrode	es			_ mm.		
	Protocol of samples testing								
		Materi	al –						
	of ent	Sheet t	hickness –						
	oer ime	Roller	width –						
	Number of experiment			ng cond	ditions			Weld	ling results
	žä	PN	Power	t: c	t. s	m	V_w ,	/ mm	Tightness

Conclusions

1

2

3

4

step

P, N

ti, s

 t_p , s

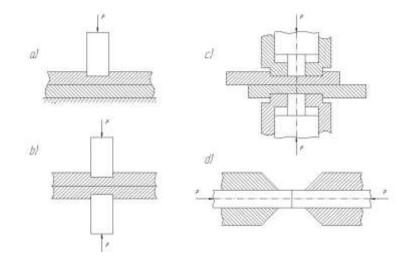
m

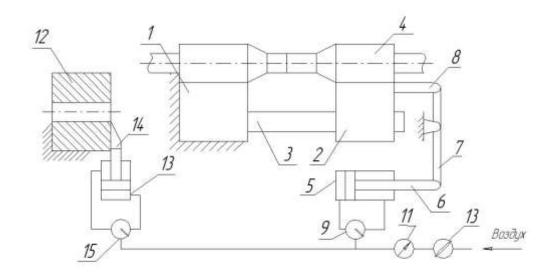
Welding results
mm Tightness

test

I, mm

V_w,


Laboratory work № 8 «Cold welding of plastic material»


The main points of the pressure cold welding process.

Schemes of cold welding

- a) –
- b) –
- c) –
- d) –

Scheme of the machine MCXC-5-3

4 -	_			
5 -	_			
6 -	_			
7 -	_			
8 -	_			
9 -	_			
	1. Technical characteristics of th	ne machine MCXC-5-3		
,	2. Protocol of the sample's tests			
•	2. Trotocor or the sample 5 tests			
Materia	l –			
Wire cre	oss-section area F, mm ² –			
№	Stick-out distance	Force of fracture, P, kN	mode of fracture	Note
1				
2				
3				
4				
<u>,</u>	3. Conclusions			
Rating _		Instructor's si	gnature	

3 –